104 research outputs found

    Coexistence of RF-powered IoT and a Primary Wireless Network with Secrecy Guard Zones

    Get PDF
    This paper studies the secrecy performance of a wireless network (primary network) overlaid with an ambient RF energy harvesting IoT network (secondary network). The nodes in the secondary network are assumed to be solely powered by ambient RF energy harvested from the transmissions of the primary network. We assume that the secondary nodes can eavesdrop on the primary transmissions due to which the primary network uses secrecy guard zones. The primary transmitter goes silent if any secondary receiver is detected within its guard zone. Using tools from stochastic geometry, we derive the probability of successful connection of the primary network as well as the probability of secure communication. Two conditions must be jointly satisfied in order to ensure successful connection: (i) the SINR at the primary receiver is above a predefined threshold, and (ii) the primary transmitter is not silent. In order to ensure secure communication, the SINR value at each of the secondary nodes should be less than a predefined threshold. Clearly, when more secondary nodes are deployed, more primary transmitters will remain silent for a given guard zone radius, thus impacting the amount of energy harvested by the secondary network. Our results concretely show the existence of an optimal deployment density for the secondary network that maximizes the density of nodes that are able to harvest sufficient amount of energy. Furthermore, we show the dependence of this optimal deployment density on the guard zone radius of the primary network. In addition, we show that the optimal guard zone radius selected by the primary network is a function of the deployment density of the secondary network. This interesting coupling between the two networks is studied using tools from game theory. Overall, this work is one of the few concrete works that symbiotically merge tools from stochastic geometry and game theory

    Tight Lower Bounds on the Contact Distance Distribution in Poisson Hole Process

    Get PDF
    In this letter, we derive new lower bounds on the cumulative distribution function (CDF) of the contact distance in the Poisson Hole Process (PHP) for two cases: (i) reference point is selected uniformly at random from R2\mathbb{R}^2 independently of the PHP, and (ii) reference point is located at the center of a hole selected uniformly at random from the PHP. While one can derive upper bounds on the CDF of contact distance by simply ignoring the effect of holes, deriving lower bounds is known to be relatively more challenging. As a part of our proof, we introduce a tractable way of bounding the effect of all the holes in a PHP, which can be used to study other properties of a PHP as well.Comment: To appear in IEEE Wireless Communications Letter

    Joint Uplink and Downlink Coverage Analysis of Cellular-based RF-powered IoT Network

    Get PDF
    Ambient radio frequency (RF) energy harvesting has emerged as a promising solution for powering small devices and sensors in massive Internet of Things (IoT) ecosystem due to its ubiquity and cost efficiency. In this paper, we study joint uplink and downlink coverage of cellular-based ambient RF energy harvesting IoT where the cellular network is assumed to be the only source of RF energy. We consider a time division-based approach for power and information transmission where each time-slot is partitioned into three sub-slots: (i) charging sub-slot during which the cellular base stations (BSs) act as RF chargers for the IoT devices, which then use the energy harvested in this sub-slot for information transmission and/or reception during the remaining two sub-slots, (ii) downlink sub-slot during which the IoT device receives information from the associated BS, and (iii) uplink sub-slot during which the IoT device transmits information to the associated BS. For this setup, we characterize the joint coverage probability, which is the joint probability of the events that the typical device harvests sufficient energy in the given time slot and is under both uplink and downlink signal-to-interference-plus-noise ratio (SINR) coverage with respect to its associated BS. This metric significantly generalizes the prior art on energy harvesting communications, which usually focused on downlink or uplink coverage separately. The key technical challenge is in handling the correlation between the amount of energy harvested in the charging sub-slot and the information signal quality (SINR) in the downlink and uplink sub-slots. Dominant BS-based approach is developed to derive tight approximation for this joint coverage probability. Several system design insights including comparison with regularly powered IoT network and throughput-optimal slot partitioning are also provided

    Nearest Neighbor and Contact Distance Distribution for Binomial Point Process on Spherical Surfaces

    Get PDF
    This letter characterizes the statistics of the contact distance and the nearest neighbor (NN) distance for binomial point processes (BPP) spatially-distributed on spherical surfaces. We consider a setup of nn concentric spheres, with each sphere SkS_k has a radius rkr_k and NkN_k points that are uniformly distributed on its surface. For that setup, we obtain the cumulative distribution function (CDF) of the distance to the nearest point from two types o observation points: (i) the observation point is not a part of the point process and located on a concentric sphere with a radius re<rk∀kr_e<r_k\forall k, which corresponds to the contact distance distribution, and (ii) the observation point belongs to the point process, which corresponds to the nearest-neighbor (NN) distance distribution

    Exploiting Randomly-located Blockages for Large-Scale Deployment of Intelligent Surfaces

    Get PDF
    One of the promising technologies for the next generation wireless networks is the reconfigurable intelligent surfaces (RISs). This technology provides planar surfaces the capability to manipulate the reflected waves of impinging signals, which leads to a more controllable wireless environment. One potential use case of such technology is providing indirect line-of-sight (LoS) links between mobile users and base stations (BSs) which do not have direct LoS channels. Objects that act as blockages for the communication links, such as buildings or trees, can be equipped with RISs to enhance the coverage probability of the cellular network through providing extra indirect LoS-links. In this paper, we use tools from stochastic geometry to study the effect of large-scale deployment of RISs on the performance of cellular networks. In particular, we model the blockages using the line Boolean model. For this setup, we study how equipping a subset of the blockages with RISs will enhance the performance of the cellular network. We first derive the ratio of the blind-spots to the total area. Next, we derive the probability that a typical mobile user associates with a BS using an RIS. Finally, we derive the probability distribution of the path-loss between the typical user and its associated BS. We draw multiple useful system-level insights from the proposed analysis. For instance, we show that deployment of RISs highly improves the coverage regions of the BSs. Furthermore, we show that to ensure that the ratio of blind-spots to the total area is below 10^5, the required density of RISs increases from just 6 RISs/km2 when the density of the blockages is 300 blockage/km^2 to 490 RISs/km^2 when the density of the blockages is 700 blockage/km^2.Comment: Accepted in IEEE Journal on Selected Areas in Communication

    Stochastic Geometry-based Trajectory Design for Multi-Purpose UAVs: Package and Data Delivery

    Full text link
    With the advancements achieved in drones' flexibility, low cost, and high efficiency, they obtain huge application opportunities in various industries, such as aerial delivery and future communication networks. However, the increasing transportation needs and expansion of network capacity demands for UAVs will cause aerial traffic conflicts in the future. To address this issue, in this paper, we explore the idea of multi-purpose UAVs, which act as aerial wireless communication data relays and means of aerial transportation simultaneously to deliver data and packages at the same time. While UAVs deliver the packages from warehouses to residential areas, we design their trajectories which enable them to collect data from multiple Internet of Things (IoT) clusters and forward the collected data to terrestrial base stations (TBSs). To select the serving nearby IoT clusters, UAVs rank them based on their priorities and distances. From the perspectives of data and package delivery, respectively, we propose two algorithms that design the optimal UAVs trajectory to maximize the transmitted data or minimize the round trip time. Specifically, we use tools from stochastic geometry to model the locations of IoT clusters and TBSs. Given the nature of random locations, the proposed algorithm applies to general cases. Our numerical results show that multi-purpose UAVs are practical and have great potential to enhance the energy/time-efficiency of future networks

    Stochastic Geometry-Based Low Latency Routing in Massive LEO Satellite Networks

    Get PDF
    In this paper, the routing in massive low earth orbit (LEO) satellite networks is studied. When the satellite-to-satellite communication distance is limited, we choose different relay satellites to minimize the latency in a constellation at a constant altitude. Firstly, the global optimum solution is obtained in the ideal scenario when there are available satellites at all the ideal locations. Next, we propose a nearest neighbor search algorithm for realistic (non-ideal) scenarios with a limited number of satellites. The proposed algorithm can approach the global optimum solution under an ideal scenario through a finite number of iterations and a tiny range of searches. Compared with other routing strategies, the proposed algorithm shows significant advantages in terms of latency. Furthermore, we provide two approximation techniques that can give tight lower and upper bounds for the latency of the proposed algorithm, respectively. Finally, the relationships between latency and constellation height, satellites' number, and communication distance are investigated

    On the Influence of Charging Stations Spatial Distribution on Aerial Wireless Networks

    Get PDF
    Using drones for cellular coverage enhancement is a recent technology that has shown a great potential in various practical scenarios. However, one of the main challenges that limits the performance of drone-enabled wireless networks is the limited flight time. In particular, due to the limited on-board battery size, the drone needs to frequently interrupt its operation and fly back to a charging station to recharge/replace its battery. In addition, the charging station might be responsible to recharge multiple drones. Given that the charging station has limited capacity, it can only serve a finite number of drones simultaneously. Hence, in order to accurately capture the influence of the battery limitation on the performance, it is required to analyze the dynamics of the time spent by the drones at the charging stations. In this paper, we use tools from queuing theory and stochastic geometry to study the influence of each of the charging stations limited capacity and spatial density on the performance of a drone-enabled wireless network

    A Dominant Interferer-based Approximation for Uplink SINR Meta Distribution in Cellular Networks

    Full text link
    This work studies the signal-to-interference-plus-noise-ratio (SINR) meta distribution for the uplink transmission of a Poisson network with Rayleigh fading by using the dominant interferer-based approximation. The proposed approach relies on computing the mix of exact and mean-field analysis of interference. In particular, it requires the distance distribution of the nearest interferer and the conditional average of the rest of the interference. Using the widely studied fractional path-loss inversion power control and modeling the spatial locations of base stations (BSs) by a Poisson point process (PPP), we obtain the meta distribution based on the proposed method and compare it with the traditional beta approximation, as well as the exact results obtained via Monte-Carlo simulations. Our numerical results validate that the proposed method shows good matching and is time competitive.Comment: arXiv admin note: text overlap with arXiv:2302.0357
    • …
    corecore